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Abstract 

Herein, we developed a biosensor based on photosensitive 

polymer cantilever to characterize cardiomyocytes (CMs) 

characteristics. The complex cantilever can sense both of 

mechanical and electrical properties of cardiac primary muscle 

cell. The cantilever device consists of couple parallel 

microelectrode, biomimetic micro pattern and thin metal strain 

sensor. All functional sub parts are unique benefit for measuring 

electrical and mechanical behavior of cardiac cell. The parallel 

micro electrode and biomimetic micro patterns are used for 

synchronize beating of individual cell and aligning cell like a real 

tissue respectively. Both of electrical stimulation and micro 

groove patterns are greatly enhance the contraction force of 

cardiomyocytes which is resulted in enhancing the sensitivity of 

the sensor. Also the cantilever system is much more effective for 

sensing the behaviour of cardiac cell.   
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1. Introduction 

Cell growing, or generation of contractile force, is a key 

component for both development and general cardiac function. 

Especially, cardiac muscle cell growing activity and beating 

frequency could indicate that cell basic characteristic. Over the 

years several research have been devoted to develop the various 

sensor and cell culturing platform to deeply understand biological 

and mechanical properties of the cardiomyocytes [1].  

In other case, cardiac toxicity is also urgent problem in world 

wide. To detect the influence of drug toxicity, researchers are 

focused on a functional groove patterned surface cantilever 

devices [2]. However, the functionalized cantilever system only 

provides an information of mechanical properties of the 

cardiomyocytes but not an electrical. The carbon electrode is 

mainly utilized for the electrical stimulation to synchronizing 

beating frequency of the cardiomyocytes, however this method is 

invasive and lacks of spatial resolution. Novel smart sensor still 

desirable, that could be sensing simultaneously both of 

electromechanical properties of the cardiomyocytes. Strain sensor 

materials could create a coupling link between mechanical and 

electric domains.  

In this study we have developed polymer cantilever, which can 

sense mechanical as well as electrical properties simultaneously. 

Polymer cantilever system provides several key advances in 

screening technology, including the ability to measure contraction 

force as a function of time and intracellular architecture. 

 

2. Material and methods  

2.1 Design and fabrication of culture constructs  

The cantilever was designed to be compatible with well-

established 3D cell culturing technique, such as biomimetic micro 

patterned surface for supporting directional grooving [3]. 

The Fig. 1 shows the schematic view of the fabricated 

cantilever system. The couple electrode array and metal strain 

sensors are designed to produce an electric field and sensor 

response signal during cantilever displacement. The 3D functional 

groove surface is used not only directional growing of cardiac cell 

but also to enhance the contraction force of the cardiomyocytes.   

 2.2. Measurement system   

Displacement of the cantilever is monitored at free end of the 

cantilever through the laser sensing device. The cantilevers 

displacement occurring as a result of contraction and relaxation of 

the cardiomyocytes are measured through the change in resistance 

(R) of the strain sensor. The change in sensor resistance is 

determined through the current-voltage (I vs V) characteristics of 

the strain sensor (KEITHLEY source-meter- 2410).  

 

3. Result  

Fig. 2 shows the optical images of the fabricated strain sensor-

integrated with polymer cantilever. Fig. 2a shows the top view of 

the strain sensor-integrated polymer cantilever with grooves, and 

Fig. 2b shows the side view of the fixed polymer cantilever. The 

Fig. 2c shown cantilever in the working solution (medium). 

In this proposed work, the strain sensor-integrated polymer 

cantilever designed to show the large response of strain sensor 

even with the small contraction force of cardiomyocytes. The 

length, width, and thickness of the cantilever are kept at 6000 µm 

× 2,000 µm × 14 µm respectively. The calculated spring constant 

of the strain sensor-integrated polymer cantilever is found to be 

∼0.012 N/m. The aspect ratio of the cantilever is set 3:1.  

After culturing neonatal rat ventricular myocyte (NRVM) on 

the cantilever surface, the electrical stimulation using square 

monophasic pulses was applied from day 4, (Fig. 3a). As seen 



 

from Fig. 3b, the cantilever displacement increased when we 

applied 0.5 Hz. To optimize appropriate frequency, range of 

electrical stimulation, various stimulation voltages, frequencies 

and pulse durations were tested. As observed from Fig. 3c-f the 

displacement of the cantilever decreases with increasing the 

frequency ranged from 0.5 Hz to 2 Hz. When the applied 

frequency increased above 2 Hz, the cantilever unable to restore 

its initial position. In this regard, the frequency of 0.5 Hz was 

selected for the electrical stimulation. The optimal parameters for 

the electrical stimulation were determined as electric field of 1.66 

V/mm, frequency of 0.5 Hz and duration time of 2 ms.  

Under these conditions, the stable electrical stimulation inside 

the cell culture medium could be obtained. The working solution 

has been changed every 3 days to avoid any contamination. 

During the electrical stimulation, we simultaneously measure the 

displacement of the cantilever using a laser vibrometer. Through 

the measured displacement, the contraction force of CMs 

cultivated on the cantilever could be evaluated. The used 

measurement system also included the function generator to 

modulate the amplitude and frequency of the input signal and 

electrical circuit to capture the output signal from the device. 

As shown in Fig. 4 the displacement of the cantilever increases 

(up to day 10) as a function of culture time. The maximum 

displacement of cantilever observed at day 10.  The real-time 

measurement of resistance changes strain sensor is performed 

with beating cardiac cell. Fig. 4b shows sensor response (∆R) and 

beating frequency of cantilever displacement. The mechanical 

deformations of the polymer cantilever increases until day 10 and 

then decreases. The maximum bending and the corresponding 

sensor response of the patterned polymer cantilever on day 10 is 

measured to be 0.109 ± 01.689 Ω and its displacement is 40 ± 0.8 

µm. 
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Fig. 1. Cantilever system based on photo sensitive biocompatible 

polymer. 

 

 
Fig. 2. (a) Optical images of fabrication of s strain sensor 

including 3D surface modification, (b) side view of fixed 

cantilever, (c) cantilever in working solution (scale bar 1µm). 

 

 
Fig. 3. Cantilever bending displacement depending on frequency 

changes of electrical stimulation (a) control, before electrical 

stimulation, (b) cantilever displacement increases after electrical 

stimulation with 0.5 Hz frequency, from (c) to (f) optimization of 

electrical stimulation frequency changes from 0.5 Hz to 2 Hz 

respectively. 

 

 
Fig. 4. Cantilever displacement changes depending on culture 

time, (b) real-time measurement of beating cardiac cell using the 

strain sensor integrated with cantilever system. 


