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Abstract

Herein, we developed a biosensor based on photosensitive
polymer cantilever to characterize cardiomyocytes (CMs)
characteristics. The complex cantilever can sense both of
mechanical and electrical properties of cardiac primary muscle
cell. The cantilever device consists of couple parallel
microelectrode, biomimetic micro pattern and thin metal strain
sensor. All functional sub parts are unique benefit for measuring
electrical and mechanical behavior of cardiac cell. The parallel
micro electrode and biomimetic micro patterns are used for
synchronize beating of individual cell and aligning cell like a real
tissue respectively. Both of electrical stimulation and micro
groove patterns are greatly enhance the contraction force of
cardiomyocytes which is resulted in enhancing the sensitivity of
the sensor. Also the cantilever system is much more effective for
sensing the behaviour of cardiac cell.

Keywords: Polymer cantilever, Strain sensor, Electrical
stimulation, Cardiomyocyte

1. Introduction

Cell growing, or generation of contractile force, is a key
component for both development and general cardiac function.
Especially, cardiac muscle cell growing activity and beating
frequency could indicate that cell basic characteristic. Over the
years several research have been devoted to develop the various
sensor and cell culturing platform to deeply understand biological
and mechanical properties of the cardiomyocytes [1].

In other case, cardiac toxicity is also urgent problem in world
wide. To detect the influence of drug toxicity, researchers are
focused on a functional groove patterned surface cantilever
devices [2]. However, the functionalized cantilever system only
provides an information of mechanical properties of the
cardiomyocytes but not an electrical. The carbon electrode is
mainly utilized for the electrical stimulation to synchronizing
beating frequency of the cardiomyocytes, however this method is
invasive and lacks of spatial resolution. Novel smart sensor still
desirable, that could be sensing simultaneously both of
electromechanical properties of the cardiomyocytes. Strain sensor
materials could create a coupling link between mechanical and
electric domains.
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In this study we have developed polymer cantilever, which can
sense mechanical as well as electrical properties simultaneously.
Polymer cantilever system provides several key advances in
screening technology, including the ability to measure contraction
force as a function of time and intracellular architecture.

2. Material and methods

2.1 Design and fabrication of culture constructs

The cantilever was designed to be compatible with well-
established 3D cell culturing technique, such as biomimetic micro
patterned surface for supporting directional grooving [3].

The Fig. 1 shows the schematic view of the fabricated
cantilever system. The couple electrode array and metal strain
sensors are designed to produce an electric field and sensor
response signal during cantilever displacement. The 3D functional
groove surface is used not only directional growing of cardiac cell
but also to enhance the contraction force of the cardiomyocytes.

2.2. Measurement system

Displacement of the cantilever is monitored at free end of the
cantilever through the laser sensing device. The cantilevers
displacement occurring as a result of contraction and relaxation of
the cardiomyocytes are measured through the change in resistance
(R) of the strain sensor. The change in sensor resistance is
determined through the current-voltage (I vs V) characteristics of
the strain sensor (KEITHLEY source-meter- 2410).

3. Result

Fig. 2 shows the optical images of the fabricated strain sensor-
integrated with polymer cantilever. Fig. 2a shows the top view of
the strain sensor-integrated polymer cantilever with grooves, and
Fig. 2b shows the side view of the fixed polymer cantilever. The
Fig. 2c shown cantilever in the working solution (medium).

In this proposed work, the strain sensor-integrated polymer
cantilever designed to show the large response of strain sensor
even with the small contraction force of cardiomyocytes. The
length, width, and thickness of the cantilever are kept at 6000 um
x 2,000 um x 14 um respectively. The calculated spring constant
of the strain sensor-integrated polymer cantilever is found to be
~0.012 N/m. The aspect ratio of the cantilever is set 3:1.

After culturing neonatal rat ventricular myocyte (NRVM) on
the cantilever surface, the electrical stimulation using square
monophasic pulses was applied from day 4, (Fig. 3a). As seen



from Fig. 3b, the cantilever displacement increased when we
applied 0.5 Hz. To optimize appropriate frequency, range of
electrical stimulation, various stimulation voltages, frequencies
and pulse durations were tested. As observed from Fig. 3c-f the
displacement of the cantilever decreases with increasing the
frequency ranged from 0.5 Hz to 2 Hz. When the applied
frequency increased above 2 Hz, the cantilever unable to restore
its initial position. In this regard, the frequency of 0.5 Hz was
selected for the electrical stimulation. The optimal parameters for
the electrical stimulation were determined as electric field of 1.66
V/mm, frequency of 0.5 Hz and duration time of 2 ms.

Under these conditions, the stable electrical stimulation inside
the cell culture medium could be obtained. The working solution
has been changed every 3 days to avoid any contamination.
During the electrical stimulation, we simultaneously measure the
displacement of the cantilever using a laser vibrometer. Through
the measured displacement, the contraction force of CMs
cultivated on the cantilever could be evaluated. The used
measurement system also included the function generator to
modulate the amplitude and frequency of the input signal and
electrical circuit to capture the output signal from the device.

As shown in Fig. 4 the displacement of the cantilever increases
(up to day 10) as a function of culture time. The maximum
displacement of cantilever observed at day 10. The real-time
measurement of resistance changes strain sensor is performed
with beating cardiac cell. Fig. 4b shows sensor response (AR) and
beating frequency of cantilever displacement. The mechanical
deformations of the polymer cantilever increases until day 10 and
then decreases. The maximum bending and the corresponding
sensor response of the patterned polymer cantilever on day 10 is
measured to be 0.109 £ 01.689 Q and its displacement is 40 & 0.8
pm.
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Fig. 1. Cantilever system based on photo sensitive biocompatible
polymer.

Fig. 2. (a) Optical images of fabrication of s strain sensor
including 3D surface modification, (b) side view of fixed
cantilever, (c) cantilever in working solution (scale bar 1um).
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Fig. 3. Cantilever bending displacement depending on frequency
changes of electrical stimulation (a) control, before electrical
stimulation, (b) cantilever displacement increases after electrical
stimulation with 0.5 Hz frequency, from (c) to (f) optimization of
electrical stimulation frequency changes from 0.5 Hz to 2 Hz
respectively.
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Fig. 4. Cantilever displacement changes depending on culture
time, (b) real-time measurement of beating cardiac cell using the
strain sensor integrated with cantilever system.




