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Gas Permeable PDMS Based Coplanar Microfluidic Channels for Surface Modification
of oxidized Galinstan®

Guangyong Li, Mitesh Parmar, Dong-weon Lee”
MEMS and Nanotechnology Laboratory, School of Mechanical Systems Engineering, Chonnam National
University, Gwangju 500757, Republic of Korea
E-mail: mems@chonnam.ac.kr

Abstract

We report a novel device having gas permeable PDMS
(polydimethlysiloxane)  microfluidic  channels for surface
modification of oxidized Galinstan®. The microfluidic channel
injected Galinstan® is surrounded by another coplanar HCI filled
channel. Due to excellent permeability of PDMS, the HCI vapor
can pass through thin PDMS wall between two channels
(interchannel PDMS wall) to achieve continuous chemical
reaction with oxidized Galinstan® The interchannel wall
thickness is optimized after HCI permeability study through
different thickness of PDMS films. Later this novel but simple
device is easily fabricated using conventional micro-molding
technology compared to non-planar structures. Considering the
handling of highly concentrated HCI, efforts are made to lower
the concentration of HCI while maintaining same performance
standard. The experimental results demonstrate that the method
easily removes the oxide layer of oxidized Galinstan® and can
move HCl-treated Galinstan® in microfluidic without any
difficulty.

Keywords: Galinstan®, Microfluidic Channel, PDMS, HCI

1. Introduction

Galinstan® is a low-toxic liquid metal eutectic GalnSn alloy
(68.5%, 21.5 and 10% by weight, respectively). Because of its
outstanding properties such as higher boiling point(1300 C),
thermal conductivity (16.5W/m<K), low electrical resistivity
(0.435uQem) and low toxicity, Galinstan® can be excellent
replacement of highly toxic mercury. One of the many
applications is tunable frequency selective surface (FSS) device
[1]. The working mechanism of tunable FSS device can be
represented with equivalent circuit based on variation in
capacitance and/or inductance. The variation in capacitance
depends largely on the movement of Galinstan®. Hence, the easy
movement of Galinstan® is of utmost importance.

However, the surface of Galinstan® is easily oxidized in air
and it behaves more like gel rather than true liquid. This superfast
oxidation is a challenging problem to overcome. The viscous
nature is largely originated from gallium oxide (Ga,O3) and it has
a significant problem for easy movement of liquid metal. In recent
years, some methods have been developed to solve this problem.
According to T. Liu et al., Galinstan® behaves like true liquid
metal in sub-ppm oxygen environment [2]. However, this requires
a vacuum sealed hermetic packaging which can be extremely
costly. Hence, efforts are made to use either oxidized Galinstan®
or to remove the oxide layer. D. Kim et al. reported a micro pillar
array based super-lyophobic polydimethlysiloxane (PDMS)
micro-tunnel for oxidized Galinstan® [3]. However, this has a
limitation in applying to 3-dimensional structures. D. Zrnic et al.
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found that the oxide layer can be removed by the treating the
surface with diluted hydrochloric acid (HCI) [4]. Unfortunately,
the surface of Galinstan® is easily oxidized again in the air.

In the present paper, a novel device having gas permeable
PDMS microfluidic channels for surface modification of oxidized
Galinstan® is presented. Galinstan® moved in the microfluidic
channel can be constantly maintained in a true liquid phase at
room temperature when it is treated by HCI filled in the coplanner
surrounding channel. The easy movement of Galinstan® helps us
to realize MEMS based FSS device.

2. Experiment

To demonstrate the movement of HCI vapor treated
Galinstan®, a coplanar microfluidic channel based PDMS device
is designed and fabricated using conventional micro-molding
technology outlined in Fig.1. The thickness of the channel wall
is finalized after studying HCI vapor permeability through
PDMS films. For this, we have made 4-inch circular polymer
films of varying thickness (200pm, 300um, 400pm, 550pum and
850um) and measured the contact angle changes of Galinstan®
droplet on PDMS. The contact angles are measured using CCD
camera along with in-house developed image processing
MATLAB program.

The device comprised of two coplanar microfluidic channels
with the cross-sectional area of 600pm*100um (width*high).
Galinstan® is injected in to a channel using Labview based
syringe pump system, as can be seen in Fig. 2. The Galinstan®
channel is surrounded by a channel filled with HCI. The HCI
concentration as well as the thickness of interchannel PDMS
wall can be deciding factors in oxide removal of oxidized
Galinstan®. After the careful study of HCI permeability through
PDMS films of different thickness, the interchannel wall for
37% HCI concentration is optimized at 200 pm. When
Galinstan® is moved in microfluidic channel; air flow (60ml/min)
is applied for cutting Galinstan® into slugs as shown in Fig. 2.
At the same time, camera is used for recording the motion of
Galinstan® slug. The separation of Galinstan® can be important,
considering the long serpentine structure of microfluidic channel
over the large area of FSS device.

3. Results and discussion

The effect of 37% HCI over the contact angle between
Galinstan® (before/ after the acid treatment) and PDMS surface
is discussed in Fig. 3. It shows ~8 pl Galinstan® droplet contact
angle variation (from 120° for oxidized Galinstan® to 150°in
case of HCI treated Galinstan®) with time for different PDMS
films. HCI vapor quickly passes through 200um PDMS film
compared to other higher thickness PDMS films. As expected,
the thinner PDMS film, the less time required to remove the



oxide layer of oxidized Galinstan®. However, the use of
maximum concentrated HCI poses the safety problem. Hence,
the next experiment is to use the lower concentration of HCI
while maintaining the same performance standard.

Fig. 4 shows the variation in Galinstan® slug velocity with
varying HCI concentrations. The velocities of Galinstan® slug,
surrounded by various concentration of HCI (37, 30, 23 and
16wt%) solutions, can be easily calculated using image
processing MATLAB  program. The velocity of Galinstan® slug
is the highest for the most concentrated HCI (i.e. 37%) providing
excellent acceleration rate but can be difficult to handle and can
pose safety problem. Presently, the time to record velocity data is
limited due to length of microfluidic channel. The increase in
length microfluidic channel will help us to find the necessary time
required to get the highest velocity (26.5mm/sec). However, the
HCI concentration such as 23% and 30% provide comparatively
faster oxide removal rate compared to 16% and are still less
dangerous to handle than 37% HCI.

4. Conclusion

In this study, coplanar microfluidic channels using gas
permeable PDMS is applied for surface modification of oxidized
Galinstan® The microfluidic channel injected Galinstan® is
surrounded by another HCI-filled coplanar channel. The
interchannel PDMS wall thickness is optimized after the HCI
permeability study through different thickness of PDMS films.
Due to good permeability of PDMS, the HCI vapor can pass
through the interchannel PDMS wall to achieve continuous
chemical reaction with oxidized Galinstan®. Based on this design,
the simple device was fabricated using conventional micro-
molding technology. The Labview based syringe pump system is
used for controlling the movement of HCI vapor treated
Galinstan® in microfluidic channel in common microfluidic
environment. Finally, we have obtained the velocities of
Galinstan® surrounded by various HCI concentrations. The
experiment results demonstrate that this novel microfluidic
platform can easily remove the oxide layer of oxidized Galinstan®
and make Galinstan® a non-wetting, Newtonian liquid metal.
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Fig.1 Fabrication sequence of PDMS channel: (a-1,a-2) SU-8 PR
mold, (a-3) PDMS coating, (a-4) peeled off from the mold, (a-5)
PDMS-Glass bonding, (a-6) Channel injected Galinstan®
surrounded by another coplanar channel filled with HCI. (b)
Cross-section of structure.
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Fig. 2 The sketch of experiment system and movement of HCI
vapor treated Galinstan® in microfluidic channel
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Fig. 3 Galinstan® droplet contact angles as a function of diffusion
time of 37 wt% HCI for various PDMS membrane thicknesses
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Fig.4 Velocity of Galinstan® slug
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