ISGMA 2014 International Symposium on Green Manufacturing and Applications June 24 (Tue) - 28 (Sat), 2014 Paradise Hotel, Busan, Korea ### **27** Friday | 9:00-10:15 | Session A-7 Grand Ballroom 1 & 2 | Session B-7
Napoli | Session C-7 <i>Venice</i> | Session D-7 <i>Miami</i> | |-------------|---|--|--|--| | | Bio Energy and
Biotechnology I | Energy Harvesting | Advanced Material I | Machining and Grinding | | | Chairs Dong-Gyu Ahn
Hwai Chyuan Ong | Chairs Dong Rip Kim
Yong Jin Yoon | Chairs Hoon Eui Jeong
Young-Bin Park | Chairs Dave (Daw-Wook) Kim
Dong-Yoon Lee | | | Kinetics and Thermodynamics Investigation of Supercritical Reactive Extraction using Jatropha Curcas L. Seeds for Biodiesel Production (Steven Lim) | An Electromagnetic Energy
Harvester with High-
efficiency Windmill-structure
for Wireless Sensor
Application
(Xuan Wu) | Synthesis and
Characterization of lonic
Liquid Mediated Reduced
Graphene Oxide-TiO ₂ Hybrid
Material for DSSC
(Varsha Khare) | Analysis of Variation of
Specific Cutting Resistance in
Machining of High Aspect
Ratio Channels
(Hwan-Jin Choi) | | | An Investigation of Oil Palm
Wastes Pyrolysis by Thermo
gravimetric Analyzer for
Potential Biofuel Production
(Noorhaza Alias) | Coplanar Microfluidic
Channels Based Reduction
Technology of Oxidized
Galinstan Applied for Energy
Harvesting (Guangyong Li) | Influence of Flame Retardant
Fillers on Fire Protection and
Mechanical Properties of
Intumescent Coatings for
Steel
(Ming Chian Yew) | Design and Analysis of a
Cost-efficient and Accurate
Micro Machine Tool with
Hybrid Toggle Structure
(Shih-Ming Wang) | | | Green Techniques to Process
Natural Products from Fruits
and Their By-Products
(Kashif Ghafoor) | Effect of Parameters on the
Performance of Rotary
Magnetostrictive Energy
Harvester
(Young-Woo Park) | Improving Mechanical and
Fire Retardant Properties of
Bio-Based Filler Reinforced
Polypropylene
(Atta Ur Rehman Shah) | A Vision-based On-machine
Measurement and
Compensation Method of
Micro Machining Error for
Micro Machine Tools
(Guan-Shiang Wang) | | | Improvement of Cyclodextrin
Glycosyltranferase (CGTase)
Secretion by Recombinant
Escherichia Coli Immobilized
on Hollow Fibe Membrane
using Full Factorial Design
(Rohaida Che Man) | Investigations of a Bistable
Energy Harvester by
Harmonic Balance Method
(Dung-An Wang) | Performance of
Biocomposites Reinforced by
Cellulose Nanofiber Obtained
from Paper Wastes
(Hitoshi Takagi) | Turning of Hardened
Martensitic Stainless Steel
with Minimum Quantity of
Lubricant using Castor Oil
(Denni Kurniawan) | | | Simulation of Cell
Differentiation Process based
on a Mechano-regulation
Theory using Deviatoric
Strains
(Han-Young Lee) | Cellulose-ZnO Hybrid
Nanocomposite for Vibration
Energy Harvesting
(Seongcheol Mun) | Quantitative Assessment of
Friction of Automatically Thin
MoS ₂
(Koo-Hyun Chung) | Application of Magnetic
Assisted Polishing to Removal
Process of Micro-burr
Created by Grinding Process
inside the Micro-hole (Myung-
Won Jung) | | 10:15-10:25 | Coffee Break | | | | | B-7-2 | Coplanar Microfluidic Channels Based Reduction Technology of Oxidized Galinstan Applied for Energy Harvesting | | | | | |-------|---|--|--|--|--| | | | | | | | | B-7-3 | Effect of Parameters on the Performance of Rotary Magnetostrictive Energy Harvester | | | | | | | Y. W. Park, H. S. Kang, M. Noh (Chungnam Nat'l Univ.) | | | | | | B-7-4 | Investigations of a Bistable Energy Harvester by Harmonic Balance Method | | | | | | | Huu-Tu Nguyen, Dung-An Wang (Nat'l Chung Hsing Univ.) | | | | | | B-7-5 | Cellulose-ZnO Hybrid Nanocomposite for Vibration Energy Harvesting | | | | | | | Seongcheol Mun, Seung-Ki Min, Jongbeom Im, Mithilesh Yadav, Jaehwan Kim (Inha Univ.) | | | | | #### Session C-7 Advanced Material I Chairs: Hoon Eui Jeong, Young-Bin Park #### Friday, June 27, 9:00 - 10:15, Room: Venice C-7-1 Synthesis and Characterization of Ionic Liquid Mediated Reduced Graphene Oxide-TiO₂ Hybrid Material for DSSC Varsha Khare, Shiva Raj Poudel, Sung-Yong Kim, Ji-Hyeon Song (Seoul Nat'l Univ.), Caroline Sunyong Lee (Hanyang Univ.), Sung-Hoon Ahn (Seoul Nat'l Univ.) C-7-2 Influence of Flame Retardant Fillers on Fire Protection and Mechanical Properties of Intumescent Coatings for Steel Ming Chian Yew, N. H. Ramli Sulong, Ming Kun Yew, M. A. Amalina, M. R. Johan (Univ. of Malaya) C-7-3 Improving Mechanical and Fire Retardant Properties of Bio-based Filler Reinforced Polypropylene Atta ur Rehman Shah, Dong-Woo Lee (Changwon Nat'l Univ.), Byung-Sun Kim (Korea Inst. of Material Sciences), Jung-Il Song (Changwon Nat'l Univ.) C-7-4 Performance of Biocomposites Reinforced by Cellulose Nanofiber Obtained from Paper Hitoshi Takagi, Antonio N. Nakagaito, Satoshi Sugano, Yuya Muneta (Univ. of Tokushima), Jitendra K. Pandey (Univ. of Petrolium and Energy Studies) C-7-5 Quantitative Assessment of Friction of Atomatically Thin MoS₂ Bien Cuong Tran Khac, Koo-Huyn Chung (Univ. of Ulsan) # Coplanar Microfluidic Channels Based Reduction Technology of Oxidized Galinstan Applied for Energy Harvesting #### Guangyong Li¹ and Dong-we on Lee^{1#} 1 MEMS & Nanotechnology Laboratory, School of Mechanical Systems Engineering, Chonnam National University, Gwangju, 500757, Republic of Korea # Corresponding Author / E-mail: mems@jnu.ac.kr, TEL: +82-062-530-1684, FAX: +82-062-530-0337 KEYWORDS: Microfluidic Channels, Liquid Metal, Oxidized Galinstan, Energy Harvesting In this paper, a gas permeable PDMS (polydimethlysiloxane) based coplanar microfluidic channel is used for recovering the non-wetting characteristic of oxidized Galinstan. Galinstan in the microfluidic channel is surrounded by another coplanar channel filled with HCl solution. Because of excellent permeability of PDMS, HCl can permeate through PDMS wall between two channels (interchannel PDMS wall) and achieve continuous chemical reaction with oxidized Galinstan. Subsequently, Galinstan behaves like true liquid in the microfluidic channel. Firstly, The behavior of reduced Galinstan oxide is analyzed in a PDMS-based coplanar microfluidic channels fabricated by simple micormolding technique. Meanwhile, the droplet volume and formation frequency at different flow rates are characterized by Lab VIEW based syringe pump system. After that, a larger Galinstan droplet array is obtained and the kinematics characteristics are analyzed. Finally, this reduction technology of oxidized Galinstan is applied to reverse electrowetting based energy harvesting. The experiment results demonstrate that this method is working very well in electronic device applications. #### **ACKNOWLEDGEMENT** This work was supported by National Research Foundation of Korea (NRF) grant through the Korean government (MEST) (No. 2012R1A2A2A01014711).