

2019년

韓國센서學會 秋季學術大會 論文集

제 30 권 제 2-<u>2</u>호

- 날짜: 2019년 8월 28일(수)~30일(금)
- 장소: 강릉 라카이샌드파인리조트
- 주최 : (사)한국센서학회
- 주관: 한국과학기술연구원, 한국세라믹기술원, 연세대학교
- 공동주최: 경북대학교 첨단센서 인력양성 및 연구센터 경북대학교 반도체융합기술연구원
- 후원: (주)센텍코리아, 강원국제회의센터, (주)엔아이디에스, 나노종합기술원, LG전자(주) 센서솔루션연구소,

아이에스테크놀로지㈜

	발표자명	발표자소속	교신저자	교신저자 소속	논문번호	논문제목
49	김수현	고려대학교	김지현	고려대학교	P4-30	Chemical sensing properties of black phosphorus field-effect transistors
50	김승주	서울대학교	장호원	서울대학교	P8-36	Bismuth doped Cesium Lead Iodide Perovskite for Resistive Switching Memory with High Air-Stability
51	김승환	한국과학기술원	박인규	KAIST	P1-06	Bending-insensitive pressure sensing property of nanomaterial-coated microporous sponge-like elastomer sensing layer
52	김영준	성균관대학교	김상우	성균관대학교	P2-28	Multimodal Enhancement of Triboelectric Touch Sensor and Luminescent Solar Concentrator by utilizing the Quantum Confined Stark Effect
53	김요한	인천대학교	명재하	인천대학교	P8-49	Growth of Ni Nanoparticles on Perovskite Electrode for Sensing Materials
54	김윤석	고려대학교	이철호	고려대학교	P7-19	Two-dimensional WSe ₂ /WO _x Quantum Well realized by Monolithic Phase Engineering
55	김은지	고려대학교	남산	고려대학교	P2-10	The multilayer piezoelectric actuator of (001)- textured PZT-PZNN ceramics fabricated at low temperature
56	김인수	고려대학교	남산	고려대학교	P3-25	Determination of the figure of merit for 33-mode piezoelectric energy harvesting system with various piezoelectric materials
57	김재혁	고려대학교	이종흔	고려대학교	P3-02	Design of BiVO ₄ /Branched WO ₃ Nanorods for Efficient Photoelectrochemical Water Splitting
58	김정준	한국과학기술연구원	최지원	한국과학기술연구원	P8-24	2-Dimensional Ti _{2-x} / ₄ □ _x / ₄ O ₄ Titanate Perovskite Nanosheet
59	김정혁	한국과학기술연구원	최원국	한국과학기술연구원	P8-27	Continous Weaving Coaxial Piezoelectric PVDF- TrFE nanofibers on Metal Wire for Highly Efficient Energy Harvesting
60	김종윤	전남대학교	이동원	전남대학교	P5-06	Assessment of cardiomyocyte maturity using micromachined cantilever devices with different electrical conductivities
61	김종현	고려대학교	남산	고려대학교	P2-03	Low-temperature growth of crystalline (Na _{1-x} K _w) NbO ₃ thin film using $Sr_2Nb_3O_{10}$ nanosheet seed layer for flexible electronic device applications
62	김준식	고려대학교	이종흔	고려대학교	P4-12	Humidity-Independent Acetone Sensing Characteristics of Pr-Doped In ₂ O ₃ Macroporous Spheres
63	김진겸	울산과학기술원	백정민	울산과학기술원	P2-29	Highly sensitive self-powered pressure sensor based on mesoporous films embedded with Inorganic Nanoparticles
64	김창일	한국세라믹기술원	백종후	한국세라믹기술원	P3-03	Development of a Self-Powered Energy Harvester in Wireless Vibration Sensor Node for Monitoring the Real-Time Operation of Rotating Devices
65	김창일	한국세라믹기술원	백종후	한국세라믹기술원	P3-26	Self-Powered Integrated Sensor for Monitoring the Real-Time Operation of Conveyor Belt System in Thermal Power
66	김해원	울산대학교	양홍근	울산대학교	P2-33	Fabrication of nickel stamp for smart sensors
67	김현우	한양대학교	김현우	한양대학교	P4-02	Improvement of gas sensing properties through 1-D nanowires with branch and functionalized metal nanoparticles
68	김현우	한양대학교	김현우	한양대학교	P4-31	Synthesis of graphene/metal oxide nanocomposites via microwave irradiation and their application in gas sensors
69	김현재	전자부품연구원	유건욱	숭실대학교	P3-23	Poly(4-vinylphenol) (PVP) encapsulated MoS ₂ phototransistors on flexible PAR substrate
70	김현재	전자부품연구원	오민석	전자부품연구원	P7-15	Solution-based oxide thin film transistor array by low temperature annealing process for image sensor array
71	김형택	성균관대학교	김상우	성균관대학교	P2-23	Piezoelectric Acoustic Sensor Based on Two- dimensional MoS ₂
72	김홍석	가천대학교	한재희	가천대학교	P4-34	Purification of Electronically Homogeneous Single-Walled Carbon Nanotube by Using Gel Chromatography for Fabrication of High-Performance DMMP Chemical Sensors

Assessment of cardiomyocyte maturity using micromachined cantilever

devices with different electrical conductivities

Jong Yun Kim¹⁾, Dong-Weon Lee^{2,3),†}

¹⁾Graduate School of Mechanical Engineering, Chonnam National University,

²⁾School of Mechanical Engineering, Chonnam National University,

³⁾Center for Next-generation Sensor Research and Development, Chonnam National University

mems@jnu.ac.kr

Abstract

Electroconductive materials provide a useful platform for cell culture in vitro environments due to their inherent conductivity and electrical activity. In this paper, we evaluate the maturity of cardiomyocytes using contraction force according to the electroconductive materials and substrate, and quantitatively analyzed the change of the contraction force according to the drugs. To align the cardiomyocytes, groove structures were integrated on three different substrates: Polydimethylsiloxane (PDMS), Polyimide (PI), and SU-8 were fabricated to analyze the maturity of cardiomyocytes according to various substrates. The highest α-actinin protein expression and sarcomere length of 1.97 μm was measured on SU-8 with 3 μm grove substrate. After the gold coating, western blot was conducted to increase the expression of the Connexin 43 and Vinculin proteins and induced the maturation of cardiomyocytes. Finally, SU-8 cantilever array was fabricated to analyze maturity of cardiomyocytes using contraction force according to electroconductive material and drugs. It is expected that drug toxicity assessment of mature cardiomyocytes will be possible through the measurement of the contraction force of cardiomyocytes, which varies with structural and electroconductive materials.

Keywords: Cardiomycytes, Cantilever, Contraction force, Drug toxicity, Electroconductive material

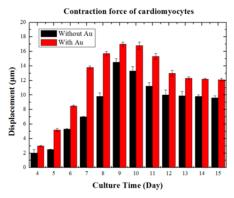


Figure. The displacement of the SU-8 cantilever W & W/O gold coating; over cell culture time

References

- [1] J. K. Mouw, G. Ou, V. M. Weaver, "Extracellular matrix assembly: a multiscale deconstruction", Nat Rev Mol Cell Biol, 15 (12), 771-85, 2014.
- [2] R. R. Besser, M. Ishahak, V. Mayo, D. Carbonero, I. Claure, A. Agarwl, "Engineered Microenvironments for Maturation of Stem Cell Derived Cardiac Myocytes", Theranostics, 8 (1), 124-140, 2018.